
Mixin' it Up:
Datastore
Edition

Chris Cahoon
Eric Oestrich

Using only an
object store
on a largeish app
and then remembering you can use more
than one database in a system

Hierarchical forms & responses

The (Central) Problem

Survey

Question (text)

Question Group

Question (date)

Response

Answer

Answer Group

Answer (date)

Question (phone #) Answer (phone #)

Lots of questions
Lots of forms
Lots of users
Lots of responses
= Lots of queries

NUMBERS

"We need an
object store!"

feels like ActiveRecord inside MongoDB

MONGOID!

"This form belongs_to
user!"

"Mongoid has helpers for
relations?!"

Response Survey

User

Not bad.

(months pass...)

Response

Survey
User

Oh.

Organization

Campaign

(etc.) (very etc.)

Mongoid works perfectly
for those two models

...but everything
else is relational!

There are
problems with

object stores

... used like a
relational db

(there are things we
missed from relational
DBs)

Relations

Can only query
one collection at

a time

Denormalization

No foreign keys

I accidentally the object

and eat it too?

Can I have my cake?

Just Mongoid

Querying
2 queries
surveys = Survey.where(:campaign_id.in =>

@user.campaigns.map(&:id))

survey_ids = surveys.map(&:id)

+ 1 query
Response.where(:survey_id.in => survey_ids,

:complete => true).first.answers

= 3 total queries for search, not
chainable

Interlude

Mongoid & ActiveRecord

Bridging the gap

Search with SQL, store
with Mongo
1 query
Response.

joins(:survey, :campaign).
where('complete' => true,

"campaigns.user_id" => @user.id). first.
answer_collection

= 1 total query for search, chainable

Should we gemify this?

GitHub:

https://github.com/oestrich/mixin_it_up_datastore

(look at the branches)

https://github.com/oestrich/mixin_it_up_datastore

Thanks

