Mixin' it Up:
Datastore
Edition

Chris Cahoon
Eric Oestrich

OIpe I3y
nNemezB

Using only an
object store
on a largeish app

and then remembering you can use more
than one database in a system

The (Central) Problem

Hierarchical forms & responses

Survey Response

Question (text) Answer
Question Group Answer Group
Question (date) Answer (date)

Question (phone #) Answer (phone #)

NUMBERS

Lots of qgquestions
Lots of forms
Lots of users
Lots of responses
= Lots of queries

"We need an
object store!™

MONGOID!

feels like ActiveRecord inside MongoDB

"This form belongs_to
user!”

"Mongoid has helpers for
relations?!”

Response

{

Survey

User

Not bad.

(months pass...)

User

Survey

Campaign

/)~

i

Organization

/ (etc.) (very eftc.)

/

Response

Oh.

Mongoid works perfectly
for those two models

...but everything
else Is relational!

There are
problems with
object stores

... used like a
relational db

(there are things we

missed from relational
DBs)

Relations

Can only query
one collection at
a time

Denormalization

No foreign keys

| accidentally the object

Can | have my cake?

and eat it too?

Just Mongoid

Querying

2 queries
surveys = Survey.where (:campaign 1d.1in =>
duser.campaigns.map (&:1id))

survey 1ds = surveys.map (&:1d)
+ 1 query
Response.where (:survey 1d.1n => survey 1ids,

:complete => true) .first.answers

= 3 total queries for search, not
chainable

Interlude

Mongoid & ActiveRecord

Bridging the gap

class Response < ActiveRecord::Base
belongs to :survey
has one :campaign, :through => :survey

before create :create answer collection

def answer collection
AnswerCollection.find(self.bson id)
end

private
def create answer collection
self.bson_id = AnswerCollection.create.id
end
end

Search with SQL, store
with Mongo

1 query
Response.
joins (:survey, :campaign).
where ('complete' => true,
"campaigns.user 1d" => (@user.id). first.
answer collection

= 1 total query for search, chainable

class Response < ActiveRecord::Base
include Mongoid::ActiveRecordBridge

belongs to :survey
has one :campaign, :through => :survey

attach mongoid document :answer collection, :create => true
end

module Mongoid: :ActiveRecordBridge
extend ActiveSupport::Concern

module ClassMethods
def attach mongoid_document(klass sym, options = {})
mongo_document finder(klass_sym)

mongo_document creater(klass_sym) if options[:create]
end

private
def mongo_document_ finder(klass_sym)
define method(klass_sym) {
constant = klass sym.to_s.camelize.constantize
constant.find(self.bson_id)

}

end

def mongo_document creater(klass_sym)
before create :"create #{klass_sym}"
define method("create #{klass_sym}") {
constant = klass_sym.to_s.camelize.constantize
self.bson_id = constant.create.id
}
end
end
end

Should we gemify this?

GitHub:

https://github.com/oestrich/mixin_it up datastore

(look at the branches)

https://github.com/oestrich/mixin_it_up_datastore

